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Abstract—This work presents an ensemble-based visual object
tracker called KFebT. This method can fuse using a Kalman
Filter the result of several out-of-the box trackers or specialist
methods that solve parts of the problem, like methods that
only estimate the target scale variation. Our purpose in joining
multiple trackers is to take advantage of the different strengths
and weaknesses of each approach. The proposed fusion method
is simple and needs no training; it just needs the tracker output
result and a confidence measure for the result of each tracker. We
performed tests on the Visual Object Tracking Challenge (VOT)
2015 dataset and evaluated our tracker in terms of expected
overlap, accuracy and robustness. We test our proposed method
on combination of two and three tracking algorithms and the
results demonstrate clear improvements over the trackers used
in its composition.

I. INTRODUCTION

Visual object tracking is a computer vision area that is re-
ceiving significant attention in the last fifteen years [1]. Visual
tracking has several applications, such as: traffic control [2],
robotics [3], sports analysis [4]–[6], and surveillance [7]. A
popular variation of this problem is the model-free where there
is no prior knowledge of the target object. In this case, the
algorithm will receive the first frame of a video stream and a
bound box defining the object. It will also need to learn online
the representation of the object and report a bound box with
the object posed in the upcoming frames.

Despite the large amount of tracking work, this problem
still presenting challenges due to occlusion, changes in il-
lumination, fast motion, background clutter, geometric trans-
formations and appearance change. Some proposed trackers
focus to solve individual problems, like scale changing [8], [9],
occlusion handling [10], or tracking of non-rigid objects [11].
However, most of the trackers perform poorly when they
are in a non designed situation [12]. In this scenario, some
proposals attempt to join the results of several trackers with
distinct tracking strategies [12]–[14] achieving better results
than individual ones.

At the present time, most of the more robust tracking
methods show a high computational cost. The fifteen best-
ranked tracker methods compared on [1] do not achieve the
real-time threshold, compromising the applicability on real-
time applications. When a tracking method is used in real-
time applications, it may be a part of a more complex system.
It is also important that the tracker does not occupy all

system resources. Considering these situations, we developed a
tracking method that combines the result of fast techniques to
produce a superior result, while still running in real time. Our
proposal is to ensemble out-of-the box trackers using a Kalman
Filter [15] to fuse the result multiple real time trackers.

The contribution of this work is a method to fuse multiple
tracking methods using a Kalman filter. We also use an unex-
pected motion penalty to produce a continuous and smooth
trajectory. It is a fast method that does not need training,
being ideal for the fusion of fast trackers without overloading
the performance. Our proposed approach was tested in Visual
Object Tracking (VOT) 2015 dataset [1] on combinations of
two and three trackers. The implementation of the method
proposed in this work is public available 1.

This paper is organized as follows: Section II shows the
related works. In Section III we formally present our approach
describing the proposed method. Section IV presents the test
methodology and experimental results, and finally, Section V
states the conclusion and points to future research directions.

II. RELATED WORK

Given the visual tracking problem importance, there are nu-
merous tracking algorithms proposed in the last years using the
most diverse strategies, from part-based like CMT [16], which
employs optical flow and feature matching, to techniques
based on convolutional neural networks [17]. We restrict our
review to ensemble-based trackers.

Considering the diversity of tracking algorithms proposed in
the literature in the last years, proposals that use combinations
of trackers are recently appearing [12]–[14], [18].

Santner et al. [18] combine the result of three tracking
methods with different levels of model adaptations in order
to reduce the drift due to inaccurate models updates. Trackers
results are fused in a cascade-style using hard-coded rules.

Zhang et al. [19] use a multi-expert tracking framework
learned from different time intervals to solve the drift due to
undesirable model updates. The best expert tracker is selected
in order to maximize the entropy-based cost function. This
method does not use multiple trackers, but the same tracker
with different time stamps; thus, it does not solve the failures
inherent to the tracker.

1github.com/psenna/KF-EBT



The methods closest to the one presented in this work are
Wang et al. [13], Bailer et al. [14] and Vojir et al. [12].
They proposed a fusion of multiple and distinct out of the
box trackers. Bailer et al. fuse the result of multiple trackers
methods. The trackers run independently and the results are
combined using an attraction field based strategy.

Vojir et al. propose an online training method for a Hidden
Markov Model(HMM) using it to fuse the result of three
trackers and a detector. Wang et al. propose a factorial HMM
to aggregate the result of five state-of-the-art trackers and use
a conditional particle filter to model inference and aggregate
crowdsourced time series data. These ensemble-based tech-
niques achieve better results than the individual trackers used
in their composition.

III. FUSING TRACKERS RESULTS WITH KALMAN FILTER

Our proposed approach combines the result of multiple out-
of-the box trackers or experts methods that solve parts of the
problem, in a simple and fast way using Kalman Filter. This
approach can fuse several trackers just needing a measure to
evaluate their confidence results.

Two aspects of the fusion trackers process are vital: the
data delivered from the tracker to the fusion algorithm and
its feedback to the trackers. In order to simplify the tracker’s
integration, we use the tracker’s result as an input to the fusion
method. Using this strategy, we need to implement fewer
modifications on the trackers.

The tracker fusion can be done with or without feed-
back [14]. When it is done without feedback, the tracker
integration is easier, but if the tracker loses the right path, it
can remain lost in the rest of the sequence, acting negatively
in the final result. Our approach performs feedback informing
the tracker’s fusion result.

When a tracker presents some adaptation of its model, it
should be done with the tracker own result instead of the fused
result to facilitate the tracker integration.

A. Kalman filter

The Kalman filter was proposed by Kalman [15] and is used
to filter and predict linear problems. It is composed of two
processes, prediction, and correction. In the prediction step, the
state at time t is estimated using the state at time t−1. This step
also uses a model that approximates the system behavior(e.g.
a physical model). In the correction step, the measured values
are used to correct the predicted values.

The Kalman filter state is composed of two variables, the
values xt and the error covariance, which measures the reliable
of the state values xt.

The Kalman filter prediction process can be described by
two steps, model update and error covariance estimation. The
model update step is defined as follow:

x−t = Axt−1 +But (1)

where A is the system model, xt−1 is the last interaction
state, and the term But is used to introduce some control or
future knowledge in the prediction process.

The next step is the error covariance(P ) estimation. This
process is defined as 2

P−
t = APt−1A

T +Q (2)

where Q is the uncertainty of the prediction process.
The correction process happens when there is a new mea-

sure available. It is composed of three steps, the computation
of the Kalman gain(Kt), the state correction, and the covari-
ance estimation.

The Kalman gain defines how much the state must be
changed by the measured values. It is computed as follow:

Kt = P−
t H

T (HP−
t H

T +R)−1 (3)

where R is the uncertainty of the measure and Ht is the
measure model.

The new state is obtained using the Kalman gain to define
how much difference between the measure values zt and the
predicted values x−t will be added to the new state xt (Eq. 4).

xt = x−t +Kt(zt −Hx−t ) (4)

The last step in the correction process is to estimate the
resultant error covariance.

Pt = P−
t −Kt ∗H ∗ P−

t (5)

Each time the prediction process happens, the error covari-
ance is added with the process uncertainty (Eq. 2) making the
state less reliable. Otherwise, the correction process reduces
the uncertainty.

B. Kalman Filter modeling

To create this Kalman filter modeling, we need to take into
account the trackers limitations and features. In this work, we
employ trackers that model their states as a bounding box that
can be represented as its center position C(x, y) and scale (S).

The Kalman filter state in time t (xt in the matrix 6)
is composed of the three variables from the tracker’s states
(x, y, and s), and the first and second derivations of this
variables. The transition matrix A is defined below and, to
simplify the problem, we consider that the time between the
frames acquisition (dt) is constant, that way the problem can
be modeled linearly. In this implementation, the time dt will
be determined by the camera (when working with 20 frames
per second camera, dt is about 50 milliseconds).

A =



1 0 0 dt 0 0 dt2

2 0 0

0 1 0 0 dt 0 0 dt2

2 0

0 0 1 0 0 dt 0 0 dt2

2
0 0 0 1 0 0 dt 0 0
0 0 0 0 1 0 0 dt 0
0 0 0 0 0 1 0 0 dt
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1
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An important observation is that we are dealing with random
motion and have no information or control over the object
trajectory. Thus, the estimation process can get poor results
if the object suddenly changes its motion pattern. For this
reason, the prediction uncertainty, Q in equation 2, is fixed and
tends to be higher when compared with trackers uncertainty.
In the case when the application uses some control or action
system with the tracker, the control information can be used
to improve the Kalman filter prediction process.

Considering that the target object trajectory is continuous,
we employ an unexpected motion penalization (p) to produce
a smooth path, penalizing the tracker that estimates the object
location unlike the predicted by the Kalman filter. The penal-
ization is computed individually for each tracker and increases
the tracker uncertainty. The penalization is defined as:

p = ((bbx −KFpredictx)/bbwidth)2+
((bby −KFpredicty)/bbheight)2

(7)

where bb is the result bounding box reported by the tracker
and KFpredict is the bounding box predicted by Kalman
filter, x−t in equation 1.

The Kalman filter needs a measure to define how reliable
is each result during the fusion process. Thus, we use the
tracker uncertainty(u), which is an exponential function that
depends on tracker result confidence and on motion penaliza-
tion (Eq. 8). Trackers confidence is a measure that evaluates
the confidence over the result presented by the tracker. In
section III-D we present the parameters used as confidence
by the trackers.

u = e−(α confidence−β p) (8)

Whereas the tracker’s confidence can have different mean-
ings, we use two scale parameters α and β to adjust the
confidence and the penalization to reasonable values and to
control the influence of each tracker. If a tracker presents better
results, we can make its α slightly higher resulting in more
influence in the final result. We set the same β value to all
trackers to reduce adjustment in the number of parameters.

For each tracker result, the variable (x,y,s) may have
different uncertainties. This modeling allows the fusion of
trackers that do not work with all variables, reporting the not
worked variables with the last fused result with an uncertainty
higher than the tracker computed uncertainty. This strategy
may be used to add more trackers that solve other problems,
such as rotation, or to include expert methods on parts of the
problem, as the CMT method [16] to estimating scale, while
preventing results with low confidence mess the final result.

The uncertainty is used in the variable R in Eq. 3 and is
represented in the matrix 9, where xtnx is the uncertainty of
the tracker tn for the variable x.

Rt =



ut1x 0 0 . . . 0 0 0
0 ut1y 0 . . . 0 0 0
0 0 ut1s . . . 0 0 0
...

...
...

. . .
...

...
...

0 0 0 . . . utnx 0 0
0 0 0 . . . 0 utny 0
0 0 0 . . . 0 0 utns


(9)

Estimated locations are used in the zt matrix (Eq. 4) and
are structured as in Eq. 10, where tnx is x coordinate of the
object center estimated by tracker n. The measure matrix H is
used to link the trackers estimations zt with the Kalman state
xt.

H =



1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0


zt =



t1x
t1y
t1s
. . .
tnx
tny
tns


(10)

The results reported by the trackers are fused using the
Kalman filter correction process. The influence for each tracker
and for the Kalman prediction in the fused result are defined
during the computation of Kalman gain (Eq. 3) and is based
on their uncertainty. The fused result is computed in Eq. 4 and
its uncertainty is computed with Eq. 5.

C. Proposed method

The proposed Kalman filter ensemble-based tracker
(KFebT) is presented in Algorithm 1.

Our method starts receiving the first frame of the sequence
and the target bounding box, line 2. Then, the trackers and
the Kalman filter are created and initialized, line 3 to 7 in the
algorithm.

For each frame in the sequence, the process starts with the
Kalman filter prediction process. Then, the trackers receive
the new frame and run independently, returning their results
and confidence parameters. During the correction, the Kalman
filter prediction bounding box is compared with each tracker
result to compute the distance penalization.

The uncertainty result of each tracker is computed using its
confidence and distance penalization, and R and zt matrices
are created using the tracker’s results and uncertainties which
will fuse them and predict the bounding box for the next frame.

The last step is the feedback, where trackers receive the
fused result from the previous frame as feedback and use it
as the start point in the search for the target object in the next
frame.

D. Used trackers

In this work, we use three trackers and an expert method
that estimates the target object scale variation. These trackers
are briefly described in this section.



Algorithm 1: KFebT - Kalman filter ensemble-based
tracker

1 begin
2 img, region ← getFirstFrame()
3 trackersVector ← createTrackers()
4 KF.create();
5 foreach Tracker in trackersVector do
6 tracker.init(img, region)
7 end
8 foreach Frame in sequence do
9 KF.predict()

10 img ← getNextFrame()
11 foreach Tracker in trackersVector do
12 tracker.track(img)
13 resultsVector ← tracker.result()
14 confidencesVector ← tracker.confidence()
15 end
16 fusedResult ← KF.correct(resultsVector,

confidencesVector)
17 foreach Tracker in trackersVector do
18 tracker.feedBack(fusedResult)
19 end
20 end
21 end

The first tracker is the ASMS (scale adaptive mean-shift
tracker), which was proposed by Vojir et al. [8] and use
the mean shift algorithm over a color histogram. The ASMS
uses a color histogram weighting that enhances the central
object pixels and a forward-backward consistency check. As
confidence measure, we use the Bhattacharyya coefficient
between the target model and the target candidate histogram.

The Kernelized correlation filter (KCF) [20] uses a structure
of circulant patch, which enhances its discriminative ability by
working with all patch cyclic shifts, and multichannel features
instead of raw pixels. We use the same parameters of the
original work. As confidence measure, we use the result of
the correlation process. Since KCF uses a filter with fixed
size and does not estimate scale, we need to rescale the patch
to fit the filter size and the uncertainty.

The last tracker is a simplification of the CMT (cluster-
ing of static-adaptive correspondences for deformable object
tracking) [16], that uses keypoints matching and tracking
with a consensus based voting scheme. To make this method
faster and test the benefit of using a simple tracker with poor
results in the fusion process, we removed the matching part
of CMT. We call this simplification as the Consensus Based
Tracker(CBT). The CBT has no model and does not store the
keypoint descriptors like the CMT. It uses the last image and
the last bounding box to find keypoints with the good features
to track [21] and the same optical flow as CMT. The scale
variation is computed as in CMT and the keypoints are used in
the CMT consensus voting scheme. Since this simple method
does not store a model of the target object, we created a target

TABLE I
PARAMETER USED IN THE TEST.

AKT ACK AK
β 0.35 0.35 0.30
α ASMS 1 1 1.1
α KCF 1.1 1.1 1
α CBT - 0.45 -
α CMT Scale 0.6 - -
KF uncertainty 0.8x10−4 0.8x10−4 0.8x10−4

color histogram measuring the result quality computing the
Bhattacharyya coefficient between this and the result found
by CBT. This coefficient was multiplied by the ratio between
the number of keypoints (that was assigned as belonging to
the target object in the voting process) and the number of
keypoints found by the feature detector in the start of the
process, being used as the confidence of CBT.

We also employed the CMT method [16] to estimate scale.
This method uses the median distance variation between pairs
of keypoints. In our implementation, we used the good features
to track algorithm [21] as feature detector. As confidence
measure, we used the ratio of the points that last after the
forward-backward validation. Since this method only estimates
the scale variation, the target object center reported is the
position received as feedback in the last frame, and the x
and y variables uncertainty are seven times higher than the
computed uncertainty.

We tested three combinations of these methods: ASMS
and KCF (KFebT-AK), ASMS, CBT and KCF (KFebT-ACK),
and ASMS, KCF and CMT scale estimation method (KFebT-
AKS). α and β parameters (Eq 8) (for each tracker and for the
Kalman filter uncertainty – prediction process) are presented
in Table I.

KFebT-AK (the main combination of this work) fuses two
fast trackers with good results. KFebT-ACK tests the combi-
nation of a weak tracker (CBT) with ASMS and KCF. KFebT-
AKS tests the inclusion of a scale estimation method (CMT)
to evaluate the fusion with methods that are not trackers.

IV. EXPERIMENTAL RESULTS

We executed three experiments using the same dataset. In
the first one, the algorithm was initialized with the ground
truth bound box from the first frame needing to report the
estimated pose of the object for each sequential frame on the
video stream. The test was run until the end of the sequence or
the object lost by the tracker (the overlap between the reported
bound box and the ground truth is zero). When the target was
lost, the tracker was reinitialized five frames after. The results
of our proposed tracker were compared against their bases
trackers and the trackers presented in Visual Object Tracking
challenge 2015 (VOT2015) report [1].

The second experiment (noise test) tested the behavior of
the tracker when initialized with noise data. The tests were
executed in the same dataset and with the same methodology,
but the initialization bound box had a random perturbation in
the order of ten percent of its size. Since this experiment had a



TABLE II
COMPARISON WITH TRACKERS USED IN THE COMBINATIONS USING THE

VOT2015 DATASET.

Expected
overlap Acc. Fail. fps

KFebT-AKS 0.2663 0.5185 1.2190 59
KFebT-ACK 0.2642 0.5224 1.3592 53
KFebT-AK 0.2610 0.5224 1.2583 109
ASMS 0.2125 0.5112 1.9736 198
KCF 0.1364 0.4397 3.5252 130
CBT 0.0548 0.4000 6.72 96

stochastic component, it was performed fifteen times for each
sequence. The results were compared with the baseline.

The third experiment (unsupervised test) evaluated the
trackers in a scenario where they do not have a supervision
system to reinitialization when a failure happened. The exper-
iment was executed only once for each tracker.

We selected the VOT2015 dataset [1] to run all our test.
It is composed of 60 video sequences. All the sequences are
composed of colored images with size varying from 320x180
to 1280x720 pixels. The dataset was annotated with rotated
bounding box. The sequences length varies from 41 to 1500.
Because of this disparity in sequences lengths, the presented
results are a weighted mean from the sequences individual
results (same methodology used in [1]).

We used the same performance measures as [1]: accuracy,
robustness, and expected overlap. Accuracy measures the over-
lap between the bounding boxes estimated by the tracker and
by the ground truth. Robustness measures how many times the
tracker lost the target in the image sequence. Expected average
overlap is a measure that represents the tracker expected
average overlap on a n frames sequence.

All the following experiments were performed on a mobile
computer with an Intel Core i7 5500u processor, 8 GB of
RAM and a solid state disk. The implementation was made
in C++ and each tracker runs in a separated threads, taking
advantage of multi-core processors.

A. Comparison with base

We present bellow the experiment results for the baseline
VOT2015 test. Table II displays the results for the three tested
combinations of KFebT and its based trackers (ASMS, KCF,
and CBT). For expected overlap, KFebT-AKS, KFebT-ACK,
and KFebT-AK obtained a gain of 25%, 24% and 22% over
ASMS and 95%, 93% and 91% over KCF, respectively. Com-
paring robustness, KFebT-AKS, KFebT-ACK, and KFebT-AK
fail 38%, 31% and 36% less than ASMS and 65%, 61% and
64% less than KCF, respectively. Our proposed method also
got a better accuracy than their bases, while all combinations
run over 50 frames per second.

The inclusion of CBT contributes to a slight improvement
in the results. Considering that CBT results are consider-
ably weaker than ASMS and KCF, our method succeeds to
fuse CBT results without disturbing the final results, making
KFebT-ACK obtain a small advantage against KFebT-AK.

TABLE III
COMPARISON WITH VOT 2015 TRACKERS THAT RUN IN REAL TIME.

Expected Speed
overlap Acc. Fail. (EFO)

KFebT-AKS 0.2663 0.5185 1.2190 55.45
KFebT-ACK 0.2642 0.5224 1.3592 49.25
KFebT-AK 0.2610 0.5224 1.2583 102.65
ASMS (VOT) 0.2117 0.5066 1.8464 115.09
sKCF [9] 0.1620 0.4847 2.6811 66.22
bdf [23] 0.1526 0.4014 3.1058 200.24
PKLTF [24] 0.1524 0.4527 2.7210 29.93
FCT [25] 0.1512 0.4314 3.3383 83.37
matflow [26] 0.1500 0.4199 3.1213 81.34
FoT [27] 0.1385 0.4316 4.3605 143.62
NCC [28] 0.0795 0.5000 11.3448 172.85

The inclusion of CBT scale estimation method in the fusion
also improved tracker results. This result shows that our
method can fuse incomplete trackers or just parts of trackers,
making possible the use of methods that only solve part of the
problem (like the scale or rotation of the target object), without
the need to change the other methods used in the fusion.

B. Comparison with VOT2015

The VOT challenge has its own speed measure unit called
Equivalent Filter Operations (EFO) [22], that is computed
relative to a maximum filter operation, being less sensitive
to changes in hardware compared to frames per second.

VOT2015 report [1] establishes the threshold of 20 EFO
to consider that the tracker run in real time. We compare our
proposed tracker with the trackers that overcome the real time
threshold in Table III. All combinations of KFebT achieve
a higher expected overlap and accuracy, and a lesser failure
rate than all compared trackers. It is important to note that
our proposed tracker, even if not being the faster, overcome
the real time threshold by a comfortable margin while getting
an expressive advantage in expected overlap compared to the
other real time trackers.

The ASMS results presented in Table III is reported on VOT
challenge, which probably has some minor implementation
difference when compared with the ASMS used in this work.

We also compare our proposed tracker with the ten best-
ranked trackers in the VOT2015 report. The trackers in VOT
report are ranked in terms of expected overlap. We can
consider (by the number of trackers submitted and by the
fact that the challenge is open to accept any submission that
exceeds a minimum quality threshold) that the best-ranked
trackers are closer to the state of the art.

we present in table IV the comparison with the best-ranked
trackers in VOT2015. It is important to point out that the three
combinations of our tracker are the only ones to achieve the
real time threshold, and none of the others trackers in this
comparison get two digits in the speed measurement.

C. Noise test

In real word applications, is hard to find an initialization
bounding box with the same quality to the one found in VOT



TABLE IV
COMPARISON WITH VOT 2015 BEST 10 TRACKERS.

Expected Speed
overlap Acc. Fail. (EFO)

MDNet [29] 0.3783 0.6033 0.6936 0.87
DeepSRDCF [30] 0.3181 0.5637 1.0457 0.38
EBT [31] 0.3130 0.4732 1.0213 1.76
srdcf [30] 0.2877 0.5592 1.2417 1.99
LDP [32] 0.2785 0.4890 1.3332 5.19
sPST [33] 0.2767 0.5473 1.4796 1.03
KFebT-AKS 0.2663 0.5185 1.2190 55.45
KFebT-ACK 0.2642 0.5224 1.3592 49.25
KFebT-AK 0.2610 0.5224 1.2583 102.65
SC-EBT [13] 0.2548 0.5529 1.8587 0.79
NSAMF [34] 0.2536 0.5305 1.2921 5.58
STRUCK [35] 0.2458 0.4712 1.6097 2.44
RAJSSC [36] 0.2420 0.5659 1.6296 2.12

TABLE V
VOT 2015 RESULTS IN THE TEST WITH NOISE IN THE INITIATION AREA.

Expected overlap Accuracy Failures
KFebT-AKS 0.2443 0.4988 1.3699
KFebT-ACK 0.2392 0.4950 1.4705
KFebT-AK 0.2359 0.4959 1.5292
ASMS 0.2083 0.4899 1.9500
KCF 0.1309 0.4125 3.3278
CBT 0.0543 0.2833 9.3629

ground-truth. In this scenario, we performed a test with the
addition of noise in the initialization bounding box.

Table V shows the results from KFebT and the base trackers
in the noise test. KFebT-AK achieved an expected overlap 13%
higher than ASMS and 80% higher than KCF. Analyzing the
robustness, KFebT-AK failed 21% less than ASMS and 54%
less than KCF. It also archived a higher accuracy than their
bases.

D. Unsupervised test

As in noisy test, the unsupervised test aims to evaluate
the tracker’s behavior in a scenario closer to a real world
application when compared to the standard VOT test. In this
test, we used the VOT2015 dataset.

Unlike the standard VOT test, in the unsupervised test
the tracker is not reinitialized when it lost the target. The
tracker must be capable to recover from a failure by itself,
or it will continue to fail until the end of the sequence. This
methodology is closer to a real world application because the
tracker is unlikely to run with another system that monitors
its results frame by frame and restarts or reports the correct
location of the object if it fails.

TABLE VI
VOT 2015 DATASET RESULTS IN UNSUPERVISED TEST.

Expected overlap Accuracy
KFebT-ACK 0.4527 0.3683
KFebT-AKS 0.4507 0.3682
KFebT-AK 0.4446 0.3599
ASMS 0.4004 0.3283
KCF 0.3922 0.2537
CBT 0.1687 0.0897

The Table VI shows the results from KFebT and the base
trackers in the unsupervised test. In this test, the failures are
not computed and the tracker is evaluated by its accuracy and
expected overlap. Analyzing the best combination, KFebT-
ACK achieved an expected overlap 13% higher than ASMS
and 15% higher than KCF. In terms of accuracy, KFebT-ACK
gets an advantage of 12% and 45% from ASMS and KCF
respectively.

V. CONCLUSION

We presented a simple and fast ensemble-based tracker
using a linear Kalman filter, which can fuse the result of
several out-of-the box trackers or specialist methods.

The proposed approach was tested on the VOT2015 60
video sequence dataset. The results show that our approach
presents a higher expect overlap and accuracy and fail less
than the methods that it is composed of. Comparing with the
real-time trackers presented in VOT 2015, our approach also
reaches a smaller failure rate and a higher expected overlap
and accuracy. It also has a mean speed above 100 fps in
the VOT2015 database (in a mobile computer), which is an
appropriate value for real-time applications.

In future works, we intend to test nonlinear Kalman filters
variation, like the extended [37] and the unscented [38]. We
also plan to investigate a reinitiation strategy for the trackers
model when it presents a high uncertainty for a long period.
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[24] A. González, R. Martı́n-Nieto, J. Bescós, and J. M. Martı́nez, “Single
object long-term tracker for smart control of a ptz camera,” in Proceed-
ings of the International Conference on Distributed Smart Cameras.
ACM, 2014, p. 39.

[25] A. Varfolomieiev and O. Lysenko, “An improved algorithm of median
flow for visual object tracking and its implementation on arm platform,”
Journal of Real-Time Image Processing, vol. 11, no. 3, pp. 527–534,
2016.

[26] M. E. Maresca and A. Petrosino, “Matrioska: A multi-level approach
to fast tracking by learning,” in Image Analysis and Processing–ICIAP
2013. Springer, 2013, pp. 419–428.
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